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Charm �nal states in deep inelastic scattering constitute � 25% of the inclusive cross-section at small
x as measured at HERA. These data can reveal important information on the charm and gluon structure
of the nucleon if they are interpreted in a consistent perturbative QCD framework which is valid over the
entire energy range from threshold to the high energy limit. We describe in detail how this can be carried
out order-by-order in PQCD in the generalized MS formalism of Collins (generally known as the ACOT
approach), and demonstrate the inherent smooth transition from the 3-avor to the 4-avor scheme in a
complete order �s calculation, using a Monte Carlo implementation of this formalism. This calculation
is accurate to the same order as the conventional NLO F2 calculation in the limit Q

mc

>> 1. It includes
the resummed large logarithm contributions of the 3-avor scheme (generally known in this context as the
�xed-avor-number or FFN scheme) to all orders of �s ln(m

2
c=Q

2). For the inclusive structure function,
comparison with recent HERA data and the existing FFN calculation reveals that the relatively simple
order-�s (NLO) 4-avor (mc 6= 0) calculation can, in practice, be extended to rather low energy scales,
yielding good agreement with data over the full measured Q2 range. The Monte Carlo implementation also
allows the calculation of di�erential distributions with relevant kinematic cuts. Comparisons with available
HERA data show qualitative agreement; however, they also indicate the need to extend the calculation to
the next order to obtain better description of the di�erential distributions.
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1 Introduction

Recent measurements of charm production in deep inelastic scattering (DIS) at HERA [1, 2] have shown
that up to 25% of the total cross-section at small-x contains charm in the �nal state. This is within the
expectations of perturbative QCD based on conventional parton distributions. We are now in a position to
utilize this process to study details of the production mechanism of heavy quarks in general, and to extract
useful information on the charm and gluon structure of the proton in particular.

Conventional perturbative QCD (PQCD) theory is formulated in terms of zero-mass quark-partons. For
processes depending on one hard scale Q; the well-known factorization theorem then provides a straightfor-
ward procedure for order-by-order perturbative calculations, as well as an associated intuitive parton picture
interpretation of the perturbation series. Heavy quark production presents a challenge in PQCD because
the heavy quark mass, mH (H = c; b; t); provides an additional hard scale which complicates the situation
{ it requires a di�erent organization of the perturbative series depending on the relative magnitudes of mH

and Q.
The two standard methods for PQCD calculation of heavy quark processes represent two diametrically

opposite ways of reducing the two-scale problem to a one-scale problem. (i) In the conventional parton model
approach used in many global QCD analyses of parton distributions [3, 4, 5] and Monte Carlo programs, the
zero-mass parton approximation is applied to a heavy quark calculation as soon as the typical energy scaled

of the physical process Q is above the mass threshold mH . This leaves Q as the only apparent hard scale
in the problem. (ii) In the heavy quark approach which played a dominant role in \NLO calculations" of
the production of heavy quarks [6, 7, 8], the quark H is always treated as a \heavy" particle and never as a
parton. The mass parameter mH is explicitly kept along with Q as if they are of the same order, irrespective
of their real relative magnitudes.

The co-existence of these two opposite approaches represents an uneasy dichotomy in the current liter-
ature. On physical grounds, the zero-mass parton picture of heavy quarks should be applicable at energy
scales very much larger than the relevant quark mass, mH � Q, whereas the heavy quark approach (often
referred to as the �xed-avor-number (FFN) scheme) should be more appropriate at energy scales compa-
rable to the quark mass mH � Q. The actual experimental regime often lies in between these two extreme
regions, where the validity of either approach can be called into question. There is, however, a natural way to
incorporate both approaches in a uni�ed framework in PQCD which provides a smooth transition between
the two. This has been formulated in a series of papers over the years, Refs. [9, 10, 11, 12, 13]e, which
has now been adopted, in di�erent guises, by most recent literature on heavy quark production in PQCD.
[15, 16, 17, 18]

To see the basic ideas behind this uni�ed picture, let us focus explicitly on the production of charm
(H = c) in deep inelastic scattering. All considerations apply to a generic heavy quark. Consider the PQCD
calculation of the F2(x;Q) structure function which receives substantial contribution from charm production
as mentioned earlier. The underlying physical ideas are illustrated graphically in Fig. 1 where the charm
contribution to this structure function, denoted F c

2 (x;Q), is plotted as a function of Q at some �xed value of
x. Near threshold Q � mc, it is natural to consider the charm quark as a heavy particle, and to adopt the 3
active-parton-avor scheme of calculation (the \heavy quark approach"). As Q becomes large compared to
mc, the �xed-order calculation in this approach becomes unreliable since the perturbative expansion contains
terms of the form �ns log

n
�
m2
c=Q

2
�
at any order n, which ruin the convergence of the series|these terms

are not infra-red safe as mc ! 0 or Q ! 1. Thus the uncertainty of the 3-avor calculation grows as
Q=mc becomes large. This is illustrated in Fig. 1 as an error band marked by horizontal hashes which is
narrow near threshold but becomes ever wider as Q=mc increases. On the other hand, starting from the high
energy end (Q � mc), the most natural calculational scheme to adopt is the conventional 4-avor scheme
with active charm partons. (In this approach, the infra-red unsafe large logarithms mentioned earlier are
\resummed" and absorbed into the �nite charm parton distributions.) However, as we go down the energy
scale toward the charm production threshold region, the 4-avor calculation becomes unreliable because the
approximation mc = 0 deteriorates as Q ! mc. The uncertainty band of such a calculation is outlined in
Fig. 1 by the vertical hashes { it is narrow at high energies, but becomes increasingly wider as one approaches
the threshold region.

dWe use Q as the generic name for a typical kinematic physical scale. It could be Q, W , or pT , depending on the process.
eSee Ref. [14] for a brief review.

1



3 flavor

4 flavor

transition
point

Q2

F2
c(x,Q)

Figure 1: Schematic illustration of the uncertainty bands (hence the relative merits) of the 3-avor and
4-avor scheme calculations of the charm contribution to the inclusive structure function { and how they
can be naturally merged into a composite scheme.

The intuitive ideas embodied in Fig. 1 illustrate that: (i) these two conventional approaches are individ-
ually unsatisfactory over the full energy range, but are mutually complementary; and (ii) the most reliable
PQCD prediction for the physical F2(x;Q), at a given order of calculation, can be obtained by utilizing
the most appropriate scheme at that energy scale Q, resulting in a composite scheme, as represented by
the cross-hashed region in Fig. 1. The use of a composite scheme consisting of di�erent numbers of avors
in di�erent energy ranges, rather than a �xed number of avors, is familiar in the conventional zero-mass
parton picture. The new formalism espoused in Refs. [9, 10, 11, 12] provides a quantum �eld theoretical
basis [19, 13] for this intuitive picture in the presence of non-zero quark mass.

This generalization brings about several important distinguishing features and insights. First, after
the hard cross-section is rendered infra-red safe by factorizing out the ln(mc) terms, the remaining �nite
dependence on mc can be kept in the hard cross-sections to maintain better accuracy in the intermediate
energy region.f One can then show that the uni�ed formalism reproduces the two conventional approaches in
well-de�ned ways in their respective regions of applicability [9]-[13]. Secondly, it has become clear recently
that there is much inherent exibility in the choice of the transition energy scale (cf. Fig. 1) as well as
the detailed matching condition between the 3- and 4-avor calculations. This makes it possible to have a
variety of di�erent implementations of the new formalism [15, 16, 17, 18], with di�erent emphases. Properly
understood, this feature can be exploited to lend strength to the formalism; but, during the development of
the theory, the subtleties have given rise to much misunderstanding and confusion in existing literature.

In this paper, we study charm production in DIS using the general mass formalism, and compare the
results with recent HERA data. The main goals of this work are:

(i) Through this speci�c example, we give a concise and careful presentation of the general formalism,
including the relatively simple operational procedure for calculating its various components at any order of
�s. We hope this will help �ll the gap between the original, relatively sketchy, ACOT paper [12] and the
recent, more technical, all-order proof of the formalism by Collins [13].

(ii) We carry out the numerical calculations to make concrete the intuitive ideas illustrated in Fig. 1; and to
demonstrate the validity of the physical principles underlying the composite scheme.

(iii) We show that the exibility of the general formalism mentioned above can result in eÆcient PQCD
calculations of inclusive quantities at relatively low order in �s compared to FFN calculations { because the
relevant physics has been e�ectively \resummed" by the appropriate scheme adopted for the given energy
scale.

Item (i) is basic; it forms the foundation for the other two parts. However, since this part is about
the clari�cation of the existing theoretical formalism rather than new work, and since not all readers are
concerned with theoretical precision, we have elected to place it in the Appendix. Hopefully, this will increase

fBy contrast, in the standard literature the mc ! 0 limit is tied to the proof of factorization [20] in the �rst place. This
association is not needed, cf. [13]
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the accessibility of the main body of the paper. In regards to the underlying physics, we believe the discussion
in the appendix should make a useful contribution to clear the confusion and misunderstanding among the
various approaches that have been proposed in the recent literature following [12].

Based on the terminologies discussed in this Appendix, in Sec. 2 we describe the complete order �s
calculation (which is NLO in the 4-avor scheme) carried out in this paper in relation to previous work
on this subject. The new calculation extends the validity of the original ACOT results to NLO in the
high energy regime { on the same level as the conventional zero-mass total inclusive structure functions.
In addition, the new perspective, as illustrated in Fig. 1 above and discussed quantitatively in the paper
proper, allows a re-assessment of the physical predictions of the order �s calculation near the threshold
region, making it a viable alternative to the order �2s FFN calculation. In Sec. 3 we present the numerical
results on inclusive charm production, and demonstrate that the validity and the eÆciency of the general
formalism, as described in (ii) and (iii) above, are indeed seen at this order. We show that very good
agreement with recent HERA data on inclusive F c

2 is obtained in practice. For this study, we have developed
a new implementation of the generalized MS formalism using Monte Carlo methods. This implementation
allows the computation of di�erential distributions, with kinematic cuts, such as d�D

�

=dpt; d�
D�

=dQ; and
d�D

�

=d� which we present in Sec. 4. These results, are in qualitative agreement with available data from
HERA. However, they are not as good as those of the order �2s calculation in the 3-avor scheme. This is to
be expected for di�erential distributions with experimental cuts, since the (resummed) low-order calculation
contains more severe approximations to the kinematics of the �nal state partons. For future quantitative
studies, the general formalism needs to be expanded to incorporate higher-order results (adaptable from
existing FFN calculations). This point is discussed in the concluding section, along with other observations.

2 Total Inclusive Structure Functions in the general formalism

We consider the inclusive DIS structure functions, such as F2, focusing on the contribution of a massive
quark. For de�niteness, we assume that the only relevant quark with non-zero mass is the charm quark.
The generic leptoproduction process is depicted in Fig. 2:

`1 +A �! `2 +X; (1)

where A is a hadron, `1;2 are leptons, and X represents the summed-over �nal state hadronic particles. Note
that X may or may not contain a visible heavy-avor hadron. After the calculable leptonic part of the

l1

l2

A

X

Figure 2: The generic inclusive lepto-production process. We are primarily interesting in �nal states which
contain some heavy quarks, in particular charm.

cross-section has been factored out, we work with the hadronic process induced by the virtual vector boson
� of momentum q and polarization �:

�(q; �) +A(P ) �! X(PX): (2)
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Although our considerations apply to DIS processes induced by W and Z as well, we shall explicitly refer
to the neutral current interaction with the exchange of a virtual photon � in order to be concrete. The
cross-section is expressed in terms of the hadronic tensor

W��(q; P ) =
1

4�

X
X(PX );spin

hP je�� � J
yjPXi(2�)

4Æ(4) (P + q � PX )hPX je� � J jP i: (3)

where
P

denotes a sum over all �nal hadronic states. In most cases, it suÆces to consider the diagonal
elements of the tensor F � �W��(q; P ):

The factorization theorem in the presence of non-zero quark masses { assumed in [12] and established to
all orders in PQCD [13] { states that the inclusive cross-section can be written as a convolution:

F �
A(Q

2; x; ::) =
X
a

faA(x; �)
 b!a;�(x;Q=�;Q=mc; �s (�)) + O
�
�=Q

�p
(4)

where faA is the distribution of parton a inside the hadron A, b!a;� is the perturbatively calculable hard
cross-section for � + a ! X , p is some positive number, � denotes collectively the renormalization and
factorization scales, and a convolution in the x variable is implied. The helicity structure functions F � are
simply related to the familiar F1;2;3 [11].

The exact way that the physical structure function factorizes into the long-distance (faA) and the short-
distance (b!a;�) pieces on the right-hand side of Eq. (4) depends on the scheme used to de�ne the parton
distributions. The physical structure function F �

A should be independent of any calculational scheme; there-
fore, the de�nition of the hard cross-sections is determined by the subtraction procedure used to de�ne the
parton distributions. As discussed in the Introduction, the general formalism consists of the 3-avor scheme
at low energy scales, the 4-avor scheme at high energy scales, and a suitably chosen transition region where
matching conditions between the two schemes are applied. The precise description of these elements of the
formalism is given in the Appendix. Operational de�nitions of quantities needed in subsequent discussions
are also discussed in some detail there.

2.1 Previous calculations

To put the current calculation in context, we �rst summarize the existing calculations of leptoproduction of
charm using the precise de�nitions given in the Appendix.

� NLO 3-avor (3�2s) calculation [7]: Most dedicated calculations of heavy avor production in recent
years have been carried out in this scheme. The LO process is O(�1s) heavy-avor creation (HC), 

�g ! c�c.
The NLO processes consist of the O(�2s) virtual corrections to 

�g ! c�c as well as the real HC �l! c�cl
process, where l denotes any light parton. Cf. Fig. 3. This calculation becomes questionable when Q� mc

{ i.e., it ceases to be \NLO" in accuracy, as indicated in Fig. 1, because the perturbative expansion is
actually in �sln(Q

2=m2
c) for large Q.

� Zero-mass 4-avor (ZM) (4�1s; mc = 0) calculation: This is the formalism used in most conventional
QCD parton model calculations and popular Monte Carlo programs. It represents an approximation to the

general mass (GM) 4-avor scheme by setting mc = 0 in the hard cross-sections !̂a(x;
Q
� ;

mc

Q ; �)
mc=Q!0
�!

!̂mc=0
a (x; Q� ; �): The LO contribution consists of the O(�0s) 

�c! c heavy-avor excitation (HE) process.

The NLO contribution consists of the O(�1s) virtual corrections to 
�c! c plus the real HC �g ! c�c and,

�c! gc HE processes. Cf. Fig. 4. This calculation is unreliable in the threshold region, as mentioned in
the introduction.

� LO generalized MS calculation (ACOT) [12]: This represents the simplest implementation of the
generalized formalism [12]. It emphasizes the overlapping physics underlying the 3-avor and 4-avor
calculations in the region not far above threshold. The 4-avor calculation consists of HE �c ! c
(Fig. 4a) plus mc 6= 0 HC �g ! c�c (Fig. 4d), with the requisite subtraction term which removes the
mc mass-logarithm. Mathematically, the result on F2(x;Q; �) can be shown to match that of the O(�1s)
3-avor scheme calculation (HC �g ! c�c) as the (unphysical) factorization scale � approaches mc from
above [12]. Physically, the predicted behavior of F c

2 for Q � mc will depend on the choice of � as a
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a cb

Figure 3: Representative Feynman diagrams contributing to the calculation of the partonic structure func-
tions for charm production in the 3-avor scheme due to: (a) order �1s heavy-avor creation (HC) or gluon
fusion mechanism; (b) order �2s virtual correction to (a); and (c) order �2s real corrections involving gluon
and light-quark initial states.

a cb d

Figure 4: Representative Feynman diagrams contributing to the calculation of the partonic structure func-
tions for charm production in the 4-avor scheme due to: (a) order �0s heavy-avor excitation (HE) mech-
anism; (b) order �1s virtual correction to (a); (c) order �1s real corrections to the HE mechanism; and (d)
order �1s heavy-avor creation mechanism.

function of the physical variables, cf. next section. At a high energy scale, � � Q � mc, this calculation
only approximates the 4-avor NLO results: it contains the most important O(�1s) term, HC �g ! c�c
(because of the large gluon distribution and the need for matching), but does not include the smaller O(�1s)
terms represented by Fig. 4b,c. This calculation has been further studied by Kretzer and Schienbein [21]
and Kr�amer et al [22].

� Variations on the \variable avor number" theme: In recent years, the general approach proposed
in [9, 12] has been adopted by other groups, starting from di�erent historical perspectives, [15, 16, 17, 18].
In contrast to the �xed avor-number (FFN) approach, these are usually referred to as being in the variable
avor-number (VFN) scheme. This terminology has caused some confusion, since although the common
theme is that of [9, 12], as shown in Fig. 1, the various implementations di�er considerably. Whether
a particular implementation is self-consistent within the general framework of PQCD, or whether two
implementations are compatible within the accuracy of the perturbative expansion, are often unclear or
controversial (e.g. [23]) because of the complexity of the multi-scale problem and because of possible
misunderstandings. It is beyond the scope of this paper to critically review these approaches. By pursuing
the goals described in the introduction, we hope to provide a clearer picture of the general formalism of
[13], hence a better basis to help address some of the controversial issues in the future.

2.2 The full order �s generalized MS calculation

The calculation of charm contribution to the inclusive structure functions reported in this paper completes
the order �s calculation in the general formalism, initiated in [12], including all the hard processes of Fig. 4.
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The additional terms, although relatively small numerically at current energies, are required to make the
4-avor part of this calculation truly NLO at high energies, so that it becomes equivalent to the conventional
zero-mass NLO theory used in most modern analyses of precision DIS data. In the remainder of this section
we discuss the theoretical issues and uncertainties in the order �s 4-avor calculation at all energy scales, in
order to address the issues highlighted at the end of the introduction, Sec. 1.

At order �1s the 3-avor component of the composite scheme consists of only the (unsubtracted) O(�1s)
HC �g ! c�c process. The result is standard. Therefore, our main calculation concerns the 4-avor scheme
component. At order �1s the right-hand side of Eq. (4) consists of three terms

F
(4)
A;�(Q

2; x;mc; �) = fcA 

0b!cc;�

+ fgA 

1b!c�cg;�

+ fcA 

1b!cXc;�

+ light� parton contributions ;

(5)

where the superscript (4) indicates that this is a 4-avor calculation, and the hard-scattering cross-sections
ib!Xa;� for the various subprocesses are calculated from the corresponding partonic cross-sections i!Xa;� (with-
out the hat) according to the procedures described in Sec. A and Sec. A.3 (Appendix). A description of each
of the terms follows:

� The leading order �c! c (Fig. 4a) partonic cross-section 0!cc;� is infra-red safe, thus

0b!cc;� = 0!cc;� : (6)

� The �g ! c�c (Fig. 4d) partonic cross-section contains a single power of ln�2=m2
c which can be factorized

into the charm distribution function by the subtraction [12]

1b!c�cg;� = 1!c�cg;� �
1 ~fcg 


0!cc;� ; (7)

where the cancelling logarithm with mass-singularity resides in the O(�s) perturbative parton distribution
function

1 ~f cg = (�s=2�)Pg!q(x) ln(�
2=m2

c) (8)

� The virtual correction to �c! c (Fig. 4b) plus the real �c! gc (Fig. 4c) partonic process also contain
ln
�
�2=m2

c

�
terms which are factorized into the charm distribution function by the subtraction

1b!cXc;� = 1!cXc;� �
1 ~fcc 


0!cc;� ; (9)

where the logarithm appears in the O(�1s) perturbative parton distribution functiong

1 ~fcc =
�s
2�

4

3

"�
1 + x2

1� x

��
ln

�2

m2
c

� 1� 2 ln(1� x)

�#
+

: (10)

Substituting Eqs. (6)-(9) into Eq. (5), the right-hand side can be re-organized as

F
(4)
A;�(Q

2; x;mc; �) = fgA 

1!c�cg;�

+(fcA � fgA 

1 ~fcg � fcA 


1 ~fcc ) 

0!cc;�

+ fcA 

1!cXc;�

+ light� quark terms ;

(11)

where the ln (�=mc) terms in the !a;� factors are kept intact, and the needed subtraction terms are explicitly
grouped with the leading 2!1 term with the same kinematics. This is the form we use for the actual numerical
calculations, which we implement using a Monte Carlo approach.

gWe have calculated these terms keeping a �nite charm quark mass. As discussed in Ref. [13, 22], it would also have been
consistent to calculate diagrams with an initial state charm quark using a zero charm quark mass. The errors near threshold
in both methods of calculation are comparable and of order �2s.
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It is useful to compare this calculation with the NLO 3-avor calculation [7] which can be written, in the
same notation, as follows

F
(3)
A;�(Q

2; x;mc; �) = fgA 

1!c�cg;�

+ fgA 

2!gc�cg;�

+ fqA 

2!qc�cq;�

+ light� quark terms

: (12)

The term common to the two schemes is O
�
�1s
�
�g ! c�c, which appears as the �rst line in both Eq. 11 and

Eq. 12. For this comparison, one can consider the rest of the terms in these equations as complementary
\corrections" to the �rst term. In particular, the last two terms in the 3-avor formula Eq. 12 are genuine
O
�
�2s
�
corrections to the common term in the threshold region; hence are commonly referred to as NLO.

But at high Q2 � m2
c , these terms contain large logarithm factors lnQ2=m2

c which vitiates the perturbation
expansion. They are not NLO in this region.

In the 4-avor calculation as organized in the form Eq. 11, the last two lines are also e�ectively O
�
�2s
�
.

This is because the distribution fcA is e�ectively O
�
�1s
�
near threshold, and there is a built-in cancellation

between the leading order �c! c partonic cross-section and the �rst subtraction term in Eq. 11, as discussed
in detail in Ref.[12]. Although these O

�
�2s
�
\correction" terms to the O

�
�1s
�
common term (�rst line) do

not contain the full NLO O
�
�2s
�
corrections at threshold, they do contain all the O

�
�2s
�
contributions which

are enhanced by ln
�
Q2=m2

c

�
and quickly dominate as Q2 increases. In fact, these large logarithmic terms

have been resummed to all orders in perturbation theory via the DGLAP-evolved charm parton distribution
contributions in the second and third lines. Therefore, in the large Q2 region the 4-avor result represents
a true NLO calculation.

In principle, if carried out to all orders in �s, the 3-avor and 4-avor calculations in the form of

F
(i)
A;�(Q

2; x;mc; �), i = 3; 4, would give exactly the same prediction for all values of the arguments. The de-
pendence on the scheme (i) and the scale (�) arises from the truncation of the perturbation series. Therefore,

in order to produce a physical prediction F phys
A;� (Q2; x;mc) and to relate the predictions in the two schemes,

a number of additional steps must be taken. In the presence of a non-zero heavy quark mass, some of these
steps are non-obvious; hence they can be the source of confusion. An explicit discussion of these elements
of the calculation will make clear the exibility as well as the uncertainties inherent in the formalism. This
we do in the Appendix, as part of the more precise description of the formalism. Here, we mention only two
features which are particularly relevant for the subsequent discussions of physical predictions.

First, within each scheme (i = 3 or 4), one needs to specify � as a function of the physical variables in
order to make a physical prediction, i.e.

F phys
A;� (Q2; x;mc) = F

(i)
A;�(Q

2; x;mc; �(x;Q;mc))

Although there is considerable freedom in choosing �(x;Q;mc), two conditions should be met so that the pre-

diction can be reliable: (i) �must be of the order ofQ ormc so that PQCD applies, and (ii) F
(i)
A;�(Q

2; x;mc; �)
must be relatively stable with respect to variations of � for the (x;Q)-range of interest. This is the well-known
scale-dependence of any PQCD calculation. For the problem at hand, a common choice for �(x;Q;mc) isp
Q2 +m2

c : it represents the typical virtuality of the internal parton lines in the important subprocesses.
The presence of the uncertainty associated with the choice of �(x;Q;mc) in each scheme is illustrated in
Fig. 1 by the respective bands.

Secondly, as shown in Fig. 1, one needs to identify an appropriate scale at which the 3-avor and the
4-avor scheme predictions are both reasonable and mutually comparable, so that the transition from one to
the other in the composite scheme can be made smoothly. In the next section we show that, for the inclusive
charm production cross-section, these conditions can be met over a rather large range of Q, extending down
to near the threshold region. One possibility then is to choose the transition point (cf. Fig. 1) at a low value,
close to mc, so that in e�ect the 4-avor calculation by itself covers the full range of physical interest.

In existing literature, it is already known that the 3-avor order �2s (NLO) calculation can be extended
to most of the currently accessible energy scales without manifest ill-e�ects of the large logarithms; and it
agrees with data rather well. Its eÆcacy at very large Q is not fully tested (cf. [16] and results of next
section). Our calculation will demonstrate the robustness of the complementary, much simpler (order �s)

7



4-avor calculation. It is worthwhile pointing out that, in the 4-avor scheme, the order �s calculation is,
in fact, also NLO { since the LO �c! c term is of order �0s , as is the case in the standard QCD theory of
inclusive structure functions. This important point is discussed in detail in the Appendix, Sec. A.5.

3 Inclusive Charm Structure Function

In the previous section, the theoretical formulation of charm production in DIS is presented within the context
of the totally inclusive structure functions F�(x;Q). Although terms involving at least one charm quark in
the �nal state are the main subject of discussion, they have been added to \light quark contributions" to
form the totally inclusive structure functions, cf. Eqs. 11 and 12. The reason to do this (rather than simply
talk about an \inclusive charm structure function", say F c

2 ) is: charm quarks are not physically observable;
there is no unique or obvious de�nition of a \F c

2 " either experimentally or theoretically. Any experimental
de�nition necessarily depends on the procedure or prescription for tagging �nal state charm (analogous
to the jet-algorithm for de�ning jets). Any theoretical de�nition will be scheme-dependent, and will be
subjected to questions such as infra-red safety (IRS), e.g. free from ln(mc) terms. The proper matching of
the experimental and theoretical de�nitions is also necessary for a meaningful comparison of theory with
experiment.

In this section, we shall be concerned with the comparison of our calculation of inclusive charm production
structure function with previous calculations, such as that of ACOT [12] and that of the NLO three-avor
scheme [7], as well as with existing experimental results. Since the energy range where these comparisons
will be made is moderate, the question of infra-red safety is not a critical one { as evidenced by the general
phenomenological success of the NLO 3-avor calculation (which is not IRS in the sense used in this paper).
For this purpose, it suÆces to de�ne the theoretical 4-avor F c

2 as the quantity consisting of terms with
at least one charm quark in the �nal state in Eq. 11, i.e. it is the right-hand side less the light-quark
contribution. At the order we are calculating, this F c

2 is actually well-de�ned and infra-red safe, { there are
no large logarithm terms.h In addition, since the charm mass is just about at the scale for PQCD to become
valid and, as discussed at the end of the previous section, the transition scale can in practice be chosen close
to mc, the generalized MS calculation reduces in practice to a 4-avor (general mass) calculation.

The 4-avor NLO calculation: The parton distribution functions faA(x; �) needed for this calculation
must be de�ned in the same renormalization scheme as the hard cross-sections used. In the 4-avor general
mass calculation, all CTEQ distributions are compatible with the scheme described in Sec. A. For all the
numerical results presented below, we use an updated version of the CTEQ5HQ distribution set [24]. In
order to compare with results from the LO and NLO 3-avor scheme, we need the corresponding parton
distributions in the 3-avor scheme. The CTEQ5F3 distributions satisfy this need, since they are obtained
from global analysis of the same data sets as the CTEQ5HQ set, with the only di�erence being in the
factorization scheme.

The calculation of the hard cross-section at O(�s) is based on Eqs. 7 and 9. In the expression for the
overall structure functions, the combination fgA


1!c�cg;� +(fcA� fgA 

1 ~fcg ) 


0!cc;�; due to the subprocesses
�c! c and �g ! c�c; comprise the original ACOT calculation [12]. With non-zero mc; they are all �nite.
The implementation of these terms in the new Monte Carlo calculation is straightforward. We have veri�ed
that the new MC program reproduces the original ACOT results in detail. Illustrations of the relative
contributions of the various terms can be found in Ref. [12]. Also, the smooth transition of the results of
the general formalism from the 3-avor one near threshold to the 4-avor one at high energies is described
in that paper.

The additional contributions fcA

1!cXc;� � fcA


1 ~fcc 

0!cc;�; due to the 

�c! gc subprocess and virtual
correction to the Born �c! c term, are new for this calculation. They contain soft divergences which must
be cancelled. In this Monte Carlo implementation, we use the phase-space splicing method to achieve the
proper cancellation of the soft divergences between the real and virtual parts. Details of this calculation are

hHowever, at the next order (�2s) and beyond, F c2 is, strictly speaking, not totally infra-red safe by itself (in the sense that

it does contain some un-cancelled log( Q
mc

) factors); only the sum with the light-quark contributions (in Eqs.5,11) is free from

such potentially large logarithms. Thus, the 4-avor formula without the light-parton term should not be used far beyond the
physical range Q � � > mc where it is well-de�ned.
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contained in [25]. For double-checking, we have independently implemented an analytic calculation based
on the formulas of Ho�mann and Moore [26]. The two calculations agree quite well with each other over
the full phase space, with the exception of small values of Q=mc. The di�erence could be attributed to a
di�erent treatment of the massive charm quark kinematics adopted by Ref. [26] in deriving their formulas.
This e�ect goes away when mc is small compared to Q; as expected.i

Results and Comparison with order �2s 3-avor calculation: We now present some typical numer-
ical results on the theoretical F c

2 (x;Q) obtained in our order �s 4-avor calculation compared to those of
order �2s 3-avor scheme. The 3-avor results were obtained from the parametrization of Ref. [27].j Each
calculation corresponds to a di�erent way of organizing the perturbation series, hence has its natural region
of applicability, as discussed in the previous sections. To do a meaningful comparison, it is important to
take into account the estimated uncertainties of each calculation. Following the example of Fig. 1, we plot a
band for each of the predictions, obtained with two choices of the renormalization and factorization scales:
� = c

p
Q2 +m2

c with c = 0:5 and 2:0. The 3-avor calculation requires parton distributions de�ned in
the same scheme. We use the CTEQ5F3 set. The results vary in appearance, depending on the kinematic
variables. Two representative plots relevant for the HERA measurements are shown in Fig. 5 where F c

2 (x;Q)
is plotted against Q for two values of x: (a) x = 0:01; and (b) x = 0:0001: These constitute real examples
of the cartoonistic Fig. 1, which is designed to emphasize the underlying ideas. These plots show that the

101 102 103 1042 3 4 5 67 2 3 4 5 67 2 3 4 5 67 2 3 4 5 67
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x = 0.01

101 102 103 104 105

Q^2 (GeV^2)

0

1
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3

4 flavor 1st order
3-flavor 2nd order

x=0.0001

Figure 5: Comparison of results of the present order �s generalized MS 4-avor calculation to that of order �2s
3-avor calculations for: (a) x = 0:01; and (b) x = 0:0001. F c

2 is plotted against Q. The uncertainties of the
calculation are represented by a band bounded by two curves obtained with the scale choices � = c

p
Q2 +m2

c ;
c = 0:5; 2.

overlapping region of the two schemes is quite wide for x = 10�4; and the overall behavior conforms with
expectations. For x = 10�2, the overlapping region is more limited and it is con�ned to low Q values. The
3-avor results fall below the 4-avor ones at large values of Q where the latter should be more reliable.
Compared to current data, both are within the experimental range; the 4-avor results are closer to the data
points, cf. next subsection, although the uncertainties of the 4-avor calculation are fairly large for x = 10�4.

Since the order �s 4-avor results are comparable to the order �2s ones at energy scales close to the
threshold in both cases (and for other values of x), it is reasonable to choose the transition scale at a
relatively low value, as mentioned earlier in the paper. The band representing the 3-avor calculation does
become wider at large Q for x = 10�2 (where the absolute values also are lower than the 4-avor calculation

iThe authors of Ref.[21] have also identi�ed some di�erences between their recent calculation with Ref.[26]. We thank S.
Kretzer for providing us with some details of this comparison. Since the di�erence in question is numerically not signi�cant,
none of the results presented below are a�ected by this problem.

jWe thank Brian Harris for furnishing us with his interface to this program.
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and data); but for x = 10�4, it remains quite narrow. Thus, the theoretically infra-red unsafe logarithms,
ln1;2(�=mc), do not seem to cause serious problems, at least for very low x.

Results Compared to recent Zeus data: The general agreement between existing data on charm
production with order �2s 3-avor calculations, using the scale choice � =

p
Q2 +m2

c , is well known. It is
of interest to compare the same data on \inclusive charm production structure function" F c

2 with our order
�s 4-avor calculation. Fig. 6 compares the results of our calculation, using the same scale choice, with
data from the recent ZEUS [28] data. The agreement is clearly excellent. Data also agree with the order �2s
3-avor calculation as shown in [28]. This higher order calculation is obviously much more elaborate than
the order �s 4-avor calculation presented here. We see that, for inclusive cross-sections, the resummation
of the �ns ln

n(�=mc) terms into the charm distribution function fc(x; �) in the 4-avor scheme o�ers a more
eÆcient way to organize the perturbative series, resulting in an e�ective NLO calculation already at order
�s, cf. Sec. A.5.
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Figure 6: Order �s 4-avor general mass calculation compared to the recent ZEUS data on F c
2 . The

calculation uses the CTEQ5HQ parton distributions with mc = 1:3GeV .

4 Semi-inclusive Cross Sections with Tagged Charm Hadrons

4.1 General considerations

Now we consider semi-inclusive cross sections, with a charm hadron tagged in the �nal state. Naively, to
compute this cross section, one simply convolves the cross sections for parton �nal states, Eqs. 11 and 12,
with a suitable fragmentation function of partons into the �nal charm hadron. However, the factorization
of the �nal state particles through fragmentation functions is only rigorously de�ned in the limit Q2 � m2

c .
Thus, the treatment of tagged charm particles in the �nal state can only be systematically applied at
high energies, using the 4-avor scheme. However, it is a common practice to introduce fragmentation
functions into charm hadrons even in the 3-avor scheme, and for energies not far above threshold. This
approach should be considered a convenient phenomenological model of hadronization, perhaps adequate
for current experimental accuracy, rather than rigorous theory. We follow this practice in our calculation,
employing fragmentation functions over the full range of Q2, while maintaining the correct factorization-
scheme implementation at high Q2.

The fragmentation functions dHa (x; �) obey the standard (mass-independent) QCD evolution equations,
and are determined from suitable initial functions at some given scale � = Q0, of the order of mc. Following
Mele and Nason [29], for a given �nal-state charm hadron H; we write

dHa (x;Q0) = dca(x;Q0)
DH
c (x;Q0) (13)
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where the partonic charm fragmentation functions fdca; a = l; cg are perturbatively calculable, andDH
c (x;Q0)

is considered non-perturbative and is to be obtained by comparison with experiment.
For the perturbatively calculable fragmentation functions, Ref. [29] gives, to order �s:

dcc(x;Q0) = Æ(1� x) +
�s(Q0)CF

2�

�
1 + x2

1� x

�
ln

Q2
0

m2
c

� 2 ln(1� x) � 1

��
+

dcg(x;Q0) =
�s(Q0)TF

2�
(x2 + (1� x)2) ln

Q2
0

m2
c

(14)

dcq;�q;�c(x;Q0) = 0

where TF = 1=2 and CF = 4=3. In keeping with the choice of the matching scale in our overall calculation,
we choose Q0 = mc for convenience in this paper.

For the non-perturbative charm quark into charmed mesons fragmentation function DH
c (z); we used the

conventional Peterson form [30],

DH
c (z) =

A

z[1� 1=z � �=(1� z)]2
; (15)

For the charm meson D(�); which will be our focus because of available experimental data, we take � = 0:02;
cf. [31], and a value for A such that the branching fraction B(c ! D�) = 0:22 [32]. We note that, although
the perturbative fragmentation functions, Eq. 14, contain singular (generalized) functions, the overall parton-
to-charm-meson fragmentation functions dHa (x; �); Eq. 13, are well behaved after convolution with the above

non-perturbative fragmentation function DD(�)

c (z).
In principle, after evolving to high enough Q2 so that �s log(Q

2=m2
c) is of order one, all of the fragmen-

tation functions dHc ; d
H
g ; d

H
q;�q;�c eventually become of the same size. In practice, however, at HERA energies

we �nd dHc � dHg � dHq;�q;�c. For currently required accuracy, it suÆces to keep only the charm-to-hadron

contributions, proportional to dHc . In this approximation, our calculation of the cross section with a tagged
charm hadron can be written in the 4-avor scheme as

FH
A;�(Q

2; x; ::) = fgA 

1!c�cg;� 
 dHc

+(fcA � fgA 

1 ~fcg � fcA 


1 ~fcc ) 

0!cc;� 
 dHc

+ fcA 

1!cXc;� 
 dHc :

(16)

To ensure that this calculation is adequate, we have also calculated the contribution from one of the
more important remaining subprocesses: gluon fragmentation in an order �s light parton hard scattering,
i.e. �q ! gq ; g ! H . It is given by: fqA 


1b!qgq;� 
 dHg , where d
H
g is the gluon fragmentation function

computed from Eqs. 13 and 14. We have veri�ed that its contribution remains small throughout the current
energy range. It becomes more noticeable only in the large Q limit. However, in this limit, the gluon
fragmentation function term is not infra-red safe by itself. To insure consistency at high energies, one needs
to include a full set of infra-red safe higher order subprocesses along with it. The full calculation is more
appropriately considered as part of the next order project.

At the same level of accuracy, it is also reasonable to ignore the evolution of dHa (x; �(x;Q)), since the
e�ect of QCD evolution is not signi�cant over the currently accessible HERA Q range. One can use the
un-evolved dHc (x; � = Q0) in place of the fully evolved dHc (x; �(x;Q;mc)) with much gain in eÆciency of
calculation and little sacri�ce in accuracy. The error incurred is of the same order as that incurred by
neglecting the subleading fragmentation functions, dHg and dHq;�q;�c ; and the comments on accounting for
ln(mc) factors made there also apply here. To be sure about this, we have performed the calculation both
with and without evolving dHc : The di�erence is indeed small. Therefore, in all our subsequent plots we
shall include only the direct charm-to-hadron contributions of Eq. (16) with the un-evolved fragmentation
function dHc (x;Q0).

4.2 Di�erential distributions

We employ the Monte Carlo method to carry out the numerical phase-space integration; the new program
package is implemented in the C++ programming language. Therefore, we can generate di�erential distribu-
tions involving �nal-state charm mesons, incorporating kinematic cuts appropriate for speci�c experimental
measurements, in addition to fully inclusive cross-sections.
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In working with on-mass-shell heavy avor quarks and hadrons in the parton language, there is an
ambiguity in de�ning the momentum fraction variables x (z) for the parton distribution (fragmentation)
function. This problem arises in all schemes; and it goes away at high energies (Q � mc), where the
parton picture becomes accurate. Following the modern practice in proofs of factorization, we de�ne the
momentum fraction variables as ratios of the relevant light-cone momentum components, e.g. p+D = zp+c for
fragmentation of a charm quark into a D meson. Other authors, e.g. [8, 34], use the prescription ~pD = z~pc
and adjust the energy variable to enforce the mass-shell condition. At moderate energies, any noticeable
di�erences in results due to the choice of this prescription signals that the calculation using fragmentation
functions is outside the region of applicability of the parton formalism. We have veri�ed that the results
presented below are insensitive to the choice between the two prescriptions.k

The QCD formula, Eq. 16, contains three scale choices in principle: the renormalization scale, the
factorization scale and the fragmentation scale. For simplicity, we choose the same energy scale �(x;Q;mc)
for all three. As in the case of the inclusive F c

2 (x;Q), for results shown below, we choose the simple function
� = c(Q2 + m2

c)
1=2, which characterizes the typical virtuality of the process. The constant c is of order

1; and is varied over same range when we try to estimate the scale-dependence of the physical predictions.
The magnitude of the charm cross-section is sensitive to the value of mc. For results presented here, we use

mMS
c = 1:3GeV , the value used in the CTEQ5HQ parton distribution analysis (which is in the middle of the

range given by the PDG review).
Fig. 7 shows plots of four di�erential distributions for D� production at HERA, calculated using the NLO

(�s) generalized MS 4-avor formalism described above. The kinematic variables and their ranges correspond
to those of the 1996-97 ZEUS data: 1 < Q2 < 600 GeV2 ; 0:02 < y < 0:7 ; 1:5 < pD

�

T < 15 GeV ; j�D� j < 1:5:
Each distribution contains two curves obtained with two values of the constant c = 0:5; 1 in the de�nition
of the scale parameter described above. These predictions, using the CTEQ5HQ parton distributions, are
compared to the ZEUS data [28]. We observe a rather large scale dependence in these results. This is not
surprising, since the compensation among the various subprocesses which underlie the scale-independence
of the physics predictions (up to some order of perturbation theory), strictly speaking, only apply to the
inclusive cross-section. The experimental kinematical cuts implemented in these exclusive calculations to
some extent undermine the mutual cancellation between diagrams which are necessary for relatively scale-
independent predictions. For example, the order �0s 

�c! c HE term (which resums the logarithms arising
from the near-collinear con�gurations of an in�nite tower of higher-order diagrams) implements the full
contribution in collinear kinematics, a clear over-simpli�cation.

Keeping this fact in mind, and with current relatively large experimental errors, the results of Fig. 7 can
be considered rather encouraging: the Q2 and pT distributions show very good general agreement; while
the W and �D distributions are \in the right ball park", the shapes are too scale-dependent to allow for
meaningful \predictions". (A speci�c choice of scale, in between the two shown, will actually yield theory
curves in reasonable agreement with data, within errors.) In order to make genuine predictions on di�erential
distributions in the 4-avor scheme, it is necessary to extend the calculation to order �2s , which would be
NNLO in the 4-avor scheme. This can be done by transforming already available NLO results for 3-avor
calculations into the 4-avor scheme. At the same order in �s, the 4-avor scheme calculation is, of course,
more involved than the (NLO) 3-avor one because of the need for including the necessary subtraction terms
in a NNLO calculation { such as those appearing in Eqs. 7, 9, and 11.

The calculation of these di�erential distributions in the �2s 3-avor FFN scheme was carried out by
[34]. Generally good agreement between these calculations and the recent ZEUS data, using speci�c parton
distributions, scale choices, etc. has been reported in Ref. [28]. Although the dependence of the predictions
to the scale choice was not discussed in this comparison, it is relatively mild, according to [34]. This is
to be expected, because the sensitivity to cuts is reduced with a better approximation of the �nal state
particle con�gurations provided by the order �2s calculation. This fact implies greater predictive power for
the di�erential distributions than the order �s 4-avor calculation.

The �D� distribution in both the 3-avor and the 4-avor calculations appear to di�er in shape compared
to the existing data points. This could be due to the inadequacy of applying the fragmentation function
approach at less than asymptotic region, as discussed in the beginning of this section. In particular, if the

kThere are some di�erential distributions, especially those associated with the unphysical partons (such as momentum
fraction carried by the charm quark, sometimes seen in the literature) which are more sensitive to the choice of de�nition of
the momentum fraction variable.
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D� is not collinear to the parton, as assumed in this approach, the rapidity distribution will be a�ected.
More extensive study of this e�ect is obviously needed.
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Figure 7: Four di�erential distributions for D� production at HERA, calculated using the NLO (�s) gener-
alized MS 4-avor formalism and mc = 1:3GeV . The two curves on each plot results from two choices of the
scale constant c = 0:5; 1. The data points are results from the ZEUS 96-97 run [28].

5 Conclusions

In this work we have shown how the generalized MS formalism can be used to calculate the production of a
heavy quark over a wide range of energies, from threshold to high Q2. For charm production, the formalism
consists of a 3-avor scheme calculation at low energies, a 4-avor scheme calculation at high energies, a
matching condition between the two schemes, and a transition scale chosen at which one switches between
the two schemes. Speci�cally, we have extended the original ACOT calculation for charm production at
HERA by adding those terms which are necessary to bring the 4-avor part of the calculation to NLO
accuracy at high energies. This brings our calculation to the same level of accuracy as the other theoretical
inputs to the CTEQ and MRS global QCD analyses.

The generalized MS formalism is ideally suited for inclusive calculations, such as F2(x;Q) in DIS. We have
shown that for a physically-motivated choice of the renormalization/factorization scale, �, the transition scale
can be chosen rather low, so that our 4-avor scheme can be used in the HERA energy range with excellent
agreement compared to data, and with considerable economy compared to the more elaborate NLO 3-avor
calculation. The calculation is much simpler and the resulting program runs faster. Furthermore, the NLO
corrections are much smaller in the 4-avor calculation. This suggests that the resummation involved in
the charm quark distribution function picks up the most important higher-order corrections even at modest
energies. It also indicates that the perturbation series in the 4-avor calculation is very well-behaved.

Our calculation has been implemented as a Monte Carlo program, so that we have also calculated di�er-
ential distributions for exclusive charm �nal states. By incorporating experimental cuts in the Monte Carlo

13



we are able to ensure that our calculation is compared directly with the data, without the need for any
theoretical extrapolation to all of phase space. The agreement with HERA data is reasonable. However, in
this case the 3-avor NLO calculation has somewhat of an edge, because there is no approximation on the
kinematics as is necessary in the resummation used in the 4-avor calculation.

The comparison between available data and the order �s 4-avor and order �2s 3-avor calculations
discussed in the last two sections demonstrates the complementary nature of the two schemes { both with
regard to the kinematic regions and to the physical quantities they are suitable for. With more abundant
and more precise experimental data on charm production, the composite generalized MS formalism, which
encompasses both, will be needed to make reliable comparisons. With this in mind we are now ready
to extend the 4-avor calculation to include the necessary O(�2s) terms, along with the O(�2s) matching
conditions. Such a calculation would include all the advantages the current calculation has in addition to
the advantages of the current 3-avor NLO calculation.

Finally, the generalized MS formalism provides a framework to extract information on the gluon and the
charm distributions of the nucleon { to the same accuracy as the overall NLO global QCD analysis based
on total DIS structure functions and other hard processes. Having established that our calculation does a
reasonable job in describing the existing HERA data, we are now in a position to explore the question of
whether the proton contains a non-perturbative charm component [35]. Certainly, it must at some level,
so the real question is how small is it? The handle on the charm distribution is unique to the generalized
formalism, since the �xed 3-avor scheme does not allow the charm parton as an independent degree of
freedom.l We note that there have been recent phenomenological studies of \intrinsic charm" which take the
theoretical cross-section to be the simple sum of the 3-avor FFN scheme formulas and an intrinsic charm
contribution by the heavy-quark excitation mechanism [36, 37, 38]. This approach cannot be internally
consistent, because the 3-avor calculation assumes parton evolution with no charm quark distribution,
while \intrinsic charm" explicitly requires one. The intimate interplay between the hard matrix elements
and parton evolution is consistently incorporated only in the generalized MS scheme. Although there has
been a recent e�ort to examine this problem incorporating some of the ideas of the general scheme [39], a
fully consistent study, preferably based on more extensive data, still awaits to be done.m
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a reliable conclusion is to be drawn, it will not suÆce to combine a subset of existing parton distributions (in a conventional
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A Formalism for Inclusive DIS Cross Section

In this appendix, we give a concise and careful presentation of the general formalism, including the relatively
simple operational procedure for calculating its various components. We hope this will help �ll the gap
between the original, relatively sketchy, ACOT paper [12] and the recent, more technical, all-order proof of
the formalism by Collins [13].

The basis for all discussions is the factorization theorem in the presence of non-zero quark masses [13],
Eq. 4. To establish this theorem in PQCD (cf. Eq. 17 below), and to give precise meaning to the various
factors, one must work with partonic cross-sections and parton distributions inside partons, rather than the
corresponding physical quantities which appear in Eq. 4. In this concise summary, we proceed as follows: (i)
spell out the operational procedure to establish the factorization formula and calculate the hard cross-sections
in any scheme; (ii) describe the speci�cs of the 3-avor and 4-avor schemes respectively; (iii) discuss the
matching conditions between the two; and (iv) consider the transition from one to the other in the composite
scheme, which constitutes the general formalism of Collins [13]. We �nish with some remarks on the meaning
of \LO" and \NLO" calculations in di�erent schemes.

A.1 Procedure to de�ne the factorization scheme and calculate the hard cross-

sections

Given the QCD Lagrangian, with non-zero masses for the heavy quarks, one arrives at the general factor-
ization formula for partonic cross-sections and parton distributions as follows: n

(i) Start with a set of relevant partonic structure functions !a similar to the left-hand side of Eq. (4) but
with on-shell parton targets and calculate them in perturbation theory in a given renormalization scheme
(i.e. with speci�c ultra-violet counter-terms) to a given order in �s. The result !a(

Q
� ; x;

mc

� ; 1� ; �s (�)) will

depend on the renormalization scale � and will contain collinear singularities (represented by 1
� ) as well as

potentially large logarithm terms of the form (�s ln(
�
mc

))n. (For simplicity we do not di�erentiate between
the renormalization scale �R and the factorization scale �f ; both of which are taken in practice to be of
order Q.)

(ii) Independently, calculate the set of process-independent perturbative partonic distribution functions ~f ba in
the same renormalization scheme, using either the (moment-space) operator-product expansion or, equiva-
lently, the (x-space) bi-local operator de�nition of the distribution functions. Both ultra-violet and collinear
singularities appear in this calculation. The ultra-violet singularities are removed by additional counter-terms
which, along with the coupling constant renormalization counter-terms, de�ne the factorization scheme. The
result takes the form ~f ba(x;

mc

� ; 1� ; �s (�)).

(iii) Con�rm that all collinear singularities in the form of 1
� terms, appearing in !a(

Q
� ; x;

mc

� ; 1� ; �s (�)) appear

in the universal form given in the process-independent functions ~f ba(x;
mc

� ; 1� ; �s (�)), so that they can be

factorized out in the manner of Eq. (4),

!a(
Q

�
; x;

mc

�
;
1

�
; �s (�)) =

X
b

~f ba(x;
mc

�
;
1

�
; �s (�))
 b!b(Q

�
; x;

mc

�
; �s (�)) ; (17)

with b!a being fully infra-red safe in the sense that it is free of all 1
� dependence. In the 4-avor scheme

de�ned below, the functions ~f ba(x;
mc

� ; 1� ; �s (�)) will also contain the same large logarithmic terms as

!a(
Q
� ; x;

mc

� ; 1� ; �s (�)), so that these too factorize in Eq. (17) with the result that b!a is free of all (�s ln( �
mc

))n

terms, and it is well-behaved as mc ! 0:

(iv) Systematically invert Eq. (17) to solve for the set of �nite hard cross-sections b!a; which are then used
in Eq. (4) for calculating physical structure functions.

nThis procedure may sound familiar because it is based on the basic principles of PQCD. We include it here because the
details, especially concerning the heavy quark mass dependence, are quite distinct from conventional practices. Thus, it is
essential to explicitly spell out the steps involved.
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There are two points to note: (a) The inversion of Eq. (17) order-by-order in the perturbation series is
equivalent to subtracting the singularities contained in ~f ba from !a; (b) There is no need to set the quark
mass(es) to zero anywhere in the above procedure.

In the following, we apply the above procedure to de�ne the two simple renormalization schemes, involving
3 or 4 active quark avors, which underlies the general approach of Refs. [9, 13]; and combine them to de�ne
the latter in the subsection under the heading of the generalized MS formalism. These discussions are
applicable to all orders in perturbation theory. Throughout these discussions, the three quarks fu; d; sg ;
with masses comparable to or less than �; will be referred to as light quarks, and denoted collectively by
q. The collection of light quarks plus the gluon g will be referred to as light partons, and denoted by l.
As mentioned earlier, although the formalism applies to all heavy quarks fc; b; tg ; we shall use the case of
charm as a generic representative, for concreteness and clarity { hence the 3- and 4-avors. Because the real
charm quark mass mc is not large compared to the on-set of the region of applicability of PQCD, the 4-avor
scheme plays a more prominent role in practical applications discussed in the main body of this paper. For
a heavier quark, the two corresponding schemes and their proper matching, as discussed in the rest of this
(theoretical) section, will be more relevant.

A.2 Three-avor Scheme

The 3-avor scheme is precisely de�ned by choosing to work with only 3 active quark avors, consisting of the
light quarks, and using the subtraction procedure of Ref. [19]. The prescription for subtracting ultra-violet
divergences encountered in the calculation of the partonic structure functions depends on the particle that
produces the divergence. Broadly speaking, divergences due to the light partons l; are removed using MS
counter terms, whereas those due to the charm quark c are removed by BPH zero-momentum subtraction
counter terms. The precise de�nition can be found in Ref. [13]. This ultra-violet subtraction scheme has the
nice feature that the charm quark explicitly decouples as its mass becomes large. In particular, the operators
which make up the charm quark distribution function are suppressed by powers of order �2=m2

c. Since these
terms are power-suppressed in the \heavy quark" mass, they are usually excluded from the 3-avor scheme
parton picture.

In practice then the partonic calculations in this scheme are done by considering diagrams where the
massive charm quark can only appear in the �nal state, and there are no charm quark distribution functions,
cf. Fig. 3. The light parton distributions always evolve according to the 3-avor DGLAP equation, for all
values of the renormalization scale �|both below and above the heavy quark production threshold. The
parton distribution functions de�ned in this scheme will be restricted to the light parton l = fg; q; �qg sector,
and they will be denoted by 3f lA. In the perturbative calculation,

3 ~f l
0

l contains ��1 pole terms which are due
to collinear singularities. The lowest order (LO, O(�1s)) partonic process in which the charm quark appears
in this scheme is the �g ! c�c \heavy-avor creation" (HC) process (also known as boson-gluon fusion),
corresponding to the diagrams of Fig.(3a). The associated partonic structure function, denoted by !c�cg ; is
�nite. The next-to-leading order (NLO) contribution includes the 1-loop virtual corrections to �g ! c�c (cf.
Fig.(3b)), plus the real partonic HC processes �l! c�cl (cf. Fig.(3c)). The collinear divergences which appear
in the calculation of the O(�2s) partonic structure functions

3!c�cg and 3!c�cll arise from splitting of massless
light partons in the collinear con�guration, and take the form of ��1 pole terms, precisely corresponding
to those appearing in 3 ~f l

0

l mentioned above. That is, the partonic structure functions have the factorized
structure shown in Eq. (4), and the hard cross-section functions !̂l will be free from ��1 collinear singularities.
This 3-avor scheme is the one used by Ref. [7] to calculate charm production to NLO, i.e. O(�2s).

o

At high energies the hard cross-sections calculated in this scheme contain powers of ln(Q2=m2
c); as men-

tioned in the introduction. The perturbative expansion should be accurate at energy scales not too far
above threshold, or Q2 � m2

c ; where ln(Q
2=m2

c) is of order 1. However, at high Q2 � mc the perturbative
expansion parameter is e�ectively �s ln(Q

2=m2
c); and the large logarithm factor spoils the convergence of the

perturbative series. In other words, the \hard cross-sections" !̂a de�ned in this scheme are �nite, but not
infra-red safe in the limit mc

Q ! 0.

oTo be consistent, the virtual correction to the process �q! qg, which contains a charm quark loop, must also be included
at this order in the 3-avor scheme calculation of the total inclusive structure functions. [40].
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A.3 Four-avor scheme with non-zero mc

In order to better deal with these logarithms at high energies it is more useful to use the 4-avor scheme, in
which the renormalization of !a and ~f ba is carried out using dimensional regularization and the MS counter
terms for all Feynman diagrams, while keeping the full quark mass dependence (mc) of the Lagrangian.

Charm distribution functions calculated in this scheme, 4 ~fca (a = l; c), are not suppressed as in the 3-avor
scheme, but contain powers of ln(mc=�), along with possible ��1 poles. Because of the di�erent subtraction
procedures used in the two schemes, even the light parton distributions 4 ~f l

0

l will di�er from 3 ~f l
0

l by a �nite
renormalization in general. (We will return to this point later.) Because renormalization constants in the MS
subtraction procedure are independent of mass, the evolution kernels for the 4 ~f ba parton distributions will be
the same as the corresponding ones in the familiar zero-mass 4-avor case. This is a signi�cant convenience.
The perturbative parton distribution functions 4 ~f ba have been calculated to NLO in Ref. [40].

Since charm also has a parton interpretation in this scheme, the set of partonic processes are expanded
to include those involving charm initial states. The LO partonic process that involves the charm quark in
the 4-avor scheme is the �c ! c \heavy-quark excitation" (HE) process (Fig.(4a)). NLO charm quark
contributions in the 4-avor scheme come from the 1-loop virtual corrections to HE �c ! c (Fig.(4b)),
and from the real HE �c ! gc and HC �g ! c�c processes (Fig.(4c,d)). Partonic structure functions
!a calculated beyond LO in this subtraction scheme contain both ��1 poles (due to collinear singularities
associated with light degrees of freedom) and powers of mass-logarithms, ln(Q=mc), (due to collinear con-
�gurations associated with the heavy degree of freedom), just as in the 3-avor scheme. The important
di�erence compared to the latter case is that these potentially large logarithm terms also appear in the
4-avor parton distributions 4 ~f ba. Consequently, they are systematically factored out from !a when we obtain
the hard cross-sections !̂a by inverting the factorization formula Eq. (17). The charm distribution function
represents the resummed contribution of all the large (infra-red unsafe) logarithm terms in !a: As a result,
!̂a is free from both types of collinear \singularities" (in quotes since the logarithms become singular only
in the zero-mass limit). In e�ect, all logarithm factors ln(Q=mc) in !a are replaced by ln(Q=�) in !̂a, (with
accompanying �nite subtractions), and the latter is infra-red safe in the mc

Q ! 0 limit.p Thus, the 4-avor
scheme has a well-de�ned high energy limit, and is expected to give a much more reliable description of the
physics of charm production at large Q than the 3-avor scheme.

As formulated above, the hard cross-sections still contain �nite charm-mass dependence, i.e. !̂a =
!̂a(x;

Q
� ;

mc

Q ; �). Being infra-red safe, as mc=Q ! 0; the limit !̂a(x;
Q
� ;

mc

Q ; �)!!̂mc=0
a (x; Q� ; �) is well de-

�ned. In this limit, the 4-avor scheme with non-zero charm mass reduces to the conventional zero-mass
(ZM) 4-avor parton schemeq, as mentioned in the introduction. As emphasized in Ref. [12], however, the
factorization of potentially dangerous ln(mc) terms does not require taking the mc ! 0 limit in the infra-
red safe coeÆcient functions. The conventional practice of always setting m = 0 in the hard cross-section
!̂a(x;Q; �) is a convenience, not a necessity; it results from the use of dimensional regularization of the zero-
mass theory as a simple and eÆcient way to classify and to remove the collinear singularities. For a \heavy
quark" with non-zero mass mc; this convenient method of achieving infra-red safety is not a natural one (as
it is for light avors), since mc itself already provides a natural cuto�. In other words, the theory has no
real collinear \singularities" associated with the charm quark, and the universal (i.e. process-independent)
and potentially large mass-logarithms can be factorized systematically as outlined above. In fact, by keeping
the charm quark mass dependence, this scheme can be extended down to lower values of Q with much more
reliable results than in the zero-mass case. This is possible because of the well-de�ned relation between the
4-avor calculation with non-zero mc and the 3-avor (FFN) calculation; e.g. at order �s, Ref. [12] showed
that, for given x;Q

4F c
2 (x;

Q

�
;
mc

�
) �!

lim �!mc

3F c
2 (x;

Q

�
;
mc

�
) O(�s) (18)

where the superscripts 3,4 refer to the 3- and 4-avor scheme calculations respectively. To distinguish this
more general 4-avor scheme from the conventional zero-mass (ZM) 4-avor scheme, we can refer it as the
general-mass (GM) 4-avor scheme.

pThe validity of these statements to order �2s can be inferred from the explicit calculations of Refs. [7, 40, 18]. The proof to
all orders of perturbation theory has been given in Ref. [13].

qIn conventional zero-mass (ZM) 4-avor theory, collinear singularities due to charm appear as ��1 poles along with those
from other avors, and are regulated accordingly. When properly calculated, the massless limit of our (mc 6= 0) Wilson

coeÆcients, !̂mc=0
a (x;Q;�); should agree with the standard zero-mass results.
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The theoretical result (Eq. 18) does not, however, constrain the threshold behavior of the predicted
physical structure function in the limit of lim Q (orW ) ! mc; to make a physical prediction, one needs
to �rst choose � as a function of the physical variables fx;Q;mcg. This is related to the well-known scale
dependence of PQCD prediction in general. We shall return to this problem at the end of the next subsection.

There is one additional advantage of the 4-avor scheme. Since the charm quark distribution is explicitly
included in the 4-avor scheme, and since mc is not much larger than a typical non-perturbative scale such as
the nucleon mass, one can allow for the existence of a possible nonperturbative (\intrinsic") charm component
inside a hadron at a low energy scale, say Q0| as the boundary condition for evolution to higher scales, just
like the other light avors. This is a possibility not permitted in the 3-avor scheme by assumption.

A.4 The generalized MS formalism with non-zero mc

Both the 3-avor and the 4-avor schemes described above are valid schemes for de�ning the perturbative
series of the inclusive cross section in principle. They are equivalent if both are carried out to all orders in
the perturbation series. At a given �nite order, they di�er by a �nite renormalizationr of the distribution
functions, as well as the strong coupling �s. From the physics point of view, when calculated to the
appropriate order (cf. below), the 3-avor scheme provides a more natural and accurate description of the
charm production mechanism near the threshold (Q2 � m2

c), whereas the 4-avor scheme does the same in
the high energy regime (Q2 � m2

c), as shown in Fig. 1.
The precise de�nitions given in the above subsections provide the means to implement the intuitive ideas

discussed in the introduction. A uni�ed program to calculate the inclusive structure functions, including
charm, which maintains uniform accuracy over the full energy range, must be a composite scheme consisting
of:
(i) the 3-avor scheme, applied from low energy scales, of the order of mc, and extended up;

(ii) the 4-avor scheme, applied from high energy scales on down; and

(iii) a set of matching conditions which de�ne the perturbative relation between the two schemes applied
at a speci�c matching scale �m.

It is useful to explicitly discuss all the elements of this composite scheme which link the component 3-avor
and 4-avor calculations discussed in previous subsections to physics predictions of the general formalism:

� Choice of scale: Within each scheme (i = 3 or 4), one needs to specify � as a function of the physical
variables in order to make a physical prediction, i.e.

F phys
A;� (Q2; x;mc) = F

(i)
A;�(Q

2; x;mc; �(x;Q;mc))

Although there is considerable freedom in choosing �(x;Q;mc), two conditions should be met so that
the prediction can be reliable: (i) � must be of the order of Q or mc so that PQCD applies, and (ii)

F
(i)
A;�(Q

2; x;mc; �) must be relatively stable with respect to variations of � for the (x;Q) of interest. This
is the well-known scale-dependence of any PQCD calculation. In Fig. 1, the presence of the uncertainty
associated with the choice of �(x;Q;mc) in each scheme is represented by the respective bands.

� Matching conditions and choice of matching scale: For a given set of arguments, F
(3)
A;�(Q

2; x;mc; �)

and F
(4)
A;�(Q

2; x;mc; �) are not independent. Being the same physical quantity calculated in two di�erent
schemes (cf. Sec. A.2 and A.3), they are related by a �nite renormalization:

4�s(�) =
3�s(�) + ��

4fa(x; �) = 3fa(x; �) + �fa(x; �)
applied at � = �m (19)

where �� and �fa(x; �) are fully calculable once the two schemes are de�ned. They have been calculated
to order �2s [40]. Speci�cally, the simpler results at order �s are [9]:

4�s(�) =
3�s(�)

�
1 +

3�s(�)

6�
ln

�2

m2
c

+O(�2s)

�
(20)

rThe magnitude of the \�nite" renormalization depends on the renormalization scale: e.g. ln(mc=�) factors are �nite, but
can be numerically large if �� mc:
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4fq(x; �) = 3fq(x; �) + 0 + O(�2s)
4fg(x; �) = 3fg(x; �) �

3�s(�)
6� ln �2

m2
c

3fg(x; �) + O(�2s)

4fc(x; �) = 0 +
3�s(�)
4� ln �2

m2
c

R
dz
z (z2 + (1� z)

2
) 3fg(xz ; �) + O(�2s)

(21)

The scale at which these two schemes are matched will be called the matching point, and denoted by
�m: Note that either scheme can still be used with � above or below the matching point, it is just that
the equations (19) are only enforced at �m. In principle, �m can be chosen at any value { di�erent
choices lead to the same overall results, up to higher order corrections. As can be seen in Eqs. 20 and 21,
in the generalized MS scheme, ��(�) and �fa(x; �) are both of the form �s(�) ln(�=mc) C1 + O(�2s).
Thus, if one chooses �m = mc, both functions �(�) and fa(x; �) in the 3-avor scheme are equal to their
counterpart in the 4-avor scheme to �rst order in �s at the matching point. Most recent works adopt
this choice [9, 41, 18]; we do the same in this paper. Although this choice is convenient, it is not required
in the general formalism. The ideas behind the matching conditions, Eq. 19, are illustrated in Fig. 8 which
show two possible matching points, the �rst being the special one �m = mc. This plot also shows that
�m should not be chosen too far above mc, lest the factor �s ln(�=mc) in the discontinuity ceases to be
perturbative.

∆ ∼ α2

∆ ∼ αs
 log(µ/mc) +  α2

4-flavor
3-flavor

µm1=mc µm2

αs(µ) or f(x,µ)

µ

Figure 8: Schematic illustration of the matching between 3-avor and 4-avor schemes. Two possible
matching points are shown: the �rst one, �m1, is at the the value mc where the discontinuity is of order �

2
s ;

the second one, �m2, is at an arbitrary value where the discontinuities are of order �sln(�=mc).

� Choice of transition scale: With F
(i)
A;�(Q

2; x;mc; �(x;Q;mc)), i = 3; 4, we have two sets of calculations,
one for each scheme. For physics applications, we need to specify which of these to use, say

F phys
A;� (Q2; x;mc) = f

F
(3)
A;�(Q

2; x;mc; �(x;Q;mc)) Q < �t

F
(4)
A;�(Q

2; x;mc; �(x;Q;mc)) Q > �t
(22)

where we have introduced another scale �t { the transition point { where one switches from one scheme
to the other, according to which one is more appropriate, as discussed in the introduction, cf. Fig.1 and
the previous subsections of this appendix.

Conceptually, the transition point is distinct from the matching point, as should be clear from their de�ning
equations, 19 and 22.s The guiding principle for choosing the optimal �t is that it should be within the

region where the F
(3)
A;� and F

(4)
A;� calculations are both valid, and that their di�erences within this region

sThis distinction was �rst made in Collins' paper on the general formalism [13].
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are small. For instance, in the idealized situation depicted in Fig. 1, �t is best chosen to be in the middle
of the Q range where both uncertainty bands are relatively narrow.

In practice, one can only estimate the range of uncertainties of the 3-avor and 4-avor calculations, say
by examining the scale-dependence of the respective calculations and then make a judicious choice of �t.
In the case of inclusive charm production discussed in Sec. 3, Fig. 5 shows that the transition scale can be
chosen at a relatively low value, close to mc. For this choice, the composite scheme calculation reduces,
in practice, to just the 4-avor calculation.

A.5 What do \LO" and \NLO" mean?

As already mentioned in the body of this paper, in a multi-scale problem such as heavy quark production, the
designation of \LO" and \NLO" to a given calculation can be rather misleading in conventional �xed-order
calculations, due to the presence of large logarithms which vitiates the naive counting of powers of �s. In
the composite scheme, which has a wider range of applicability then FFN schemes, the meaning of \LO"
and \NLO" can be better de�ned, provided the relative magnitudes of the large scales are properly kept in
mind. We elaborate a little bit.

� In the 3-avor scheme, \LO" consists of the O(�1s) HC �g ! c�c process; whereas \NLO" involves O(�2s)
processes such as �g ! gc�c. This designation only makes sense in the threshold region.

� In the 4-avor scheme, the \LO" process is represented by the O(�0s) HE �c! c process; and the \NLO"
ones consist of the O(�1s) HC process as well as the O(�1s) HE �c! gc process. This designation is the
familiar one in the conventional treatment of DIS structure functions.

The apparent mismatch of orders in �s (e.g. order �s being \LO" in the former, but \NLO" in the latter)
can be understood within the composite scheme which takes into account the order of magnitudes of the
other relevant quantities in the factorization formula at the appropriate energy ranges.

Speci�cally, the O(�1s) and O(�2s) 3-avor calculations lose their \LO" and \NLO" meaning as Q2

becomes very large compared to m2
c ; since each power of �s is accompanied (and neutralized) by a large

logarithm ln(Q2=m2
c) factor in the hard cross-section. Consequently, all terms become e�ectively O(�0s)!

In fact, the resummation of these large logarithms to all orders of �s gives rise precisely to the charm
distribution, resulting in the O(�0s) charm excitation process �c! c of the 4-avor scheme. Conversely, in
the 4-avor scheme, although the charm quark distribution fcA(x;Q) can be considered to be O(�0s) at high
Q2 (where all avors are on an equal footing), as we go down to a lower energy range Q2 � m2

c , one �nds
fcA(x;Q) � �1s ln(Q

2=m2
c) � O(�1s) compared to the dominant gluon and light quark distribution functions

(assuming there is no large non-perturbative charm component). Therefore, to consistently match the 4-
avor calculation onto the LO (O(�1s)) 3-avor calculation, one must include both the \LO" O(�0s) 

�c! c
and the \NLO" O(�1s) 

�g ! c�c contributions, along with the associated subtraction term in the 4-avor
calculation (Cf. Ref. [12]). This is necessary to have a complete LO calculation which matches between the
two schemes and which can cover the full range of Q2.

This mixing of terms with di�erent apparent powers of �s is physically natural ( cf. Fig. 1 ) and logi-
cally consistent { it is a necessary feature of switching between di�erent primary schemes, since any �nite
renormalization always entails a resummation (i.e. re-organization) of the perturbation series to all orders.
In more concrete terms, the need for mixing terms of di�erent apparent powers of �s arises when:

(i) the LO diagrams for di�erent subprocesses start at di�erent orders of �s;

(ii) the associated parton densities are of di�erent numerical orders of magnitude (such as between g; q; c);

(iii) the order of magnitude of a parton distribution changes as it evolves with Q (such as for c in the region
above the threshold); and

(iv) the hard cross-section contains logarithms of ratios of energy scales which become large.t

The generalized MS formalism, by keeping the physical mc; provides the appropriate scheme to describe the
underlying physical processes in the di�erent regions encountered in heavy quark production.

tFor these reasons, to require a naive uniform counting of powers of �s over a wide range of Q; when a composite scheme
must be used, would miss the basic tenet of adapting the renormalization scheme to the appropriate number of active avors
as the physical scale varies. [15]
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